linear
$\hat{y} = \mathrm{X} \theta$
$X = \begin{bmatrix} x_{11}\end{bmatrix}$
$J(\theta) = (y - X\theta)^T (y - X\theta) = \sum_{i=1}^{n}(y_i - x_i^T\theta)^2$
matrix differentiation.
linear
$\hat{y} = \mathrm{X} \theta$
$X = \begin{bmatrix} x_{11}\end{bmatrix}$
$J(\theta) = (y - X\theta)^T (y - X\theta) = \sum_{i=1}^{n}(y_i - x_i^T\theta)^2$
matrix differentiation.